Robert E. Anderson

Professor, Department of Cell Biology,
George Lynn Cross Research Professor 
Dean McGee Professor of Ophthalmology, 
Adjunct Professor of Geriatric Medicine


B.A.., Mathematics, Texas A & M University, College Station, Texas 
M.S., Biochemistry, Texas A & M University, College Station, Texas 
Ph.D., Biochemistry, Texas A & M University, College Station, Texas 
M.D., Baylor College of Medicine, Houston, Texas


American Association for the Advancement of Science 
American Society for Cell Biology 
American Society for Neurochemistry 
Association for Research in Vision and Ophthalmology (ARVO) 
FASEB (American Society for Biochemistry and Molecular Biology) 
International Society for Eye Research 
International Society for Neurochemistry 
International Society for the Study of Fatty Acids and Lipids 
Society for Neuroscience 


We are studying signaling pathways and mechanisms in the retina that provide neuroprotection from light and mutational stresses that cause retinal degenerations. Several in vivo and in vitro approaches are used. 

1). We made the unique observation that light activates the phosphoinositide signaling pathway through tyrosine phosphorylation of the insulin receptor, which leads to downstream activation of anti-apoptotic molecules, including Akt/PKB. It is our hypothesis that light capture by the visual pigment rhodopsin routinely activates this pathway, which provides daily protection for these important post-mitotic neurons. Experiments are designed to elucidate the various steps that occur between the capture of a photon by rhodopsin and the stabilization of mitochondria/inhibition of caspases, which are necessary for neuroprotection. A variety of cell biological, biochemical, and molecular biological techniques are utilized in these studies, including the use of transgenic mice that express Cre recombinase in photoreceptor cells under the control of an inducible promoter. This approach has allowed us to knock out specific genes expressing proteins known to be involved in neuroprotection/apoptosis, only in specific cells such as rod and cone photoreceptors. 

2). Stargardt-3 macular dystrophy (STGD3) is a dominantly inherited juvenile macular degeneration that eventually leads to loss of vision. We have determined that the mutated gene in STGD3, identified by others as ELOVL4, is responsible for biosynthesis of very long chain polyunsaturated fatty acids (VLC-PUFA) in the retina and a few select tissues (brain, skin, testes). Although we now know the function of the enzyme, it still remains to be determined why photoreceptor cells die in STGD3 patients. The answer to this question is important because it will determine therapeutic strategy. There are at least three explanations for the retinal phenotype seen in STGD3 patients: 1) VLC-PUFAs are necessary for cell survival and their loss leads to cell death, 2) Loss of ER retention signal leads to mislocalization of the ELOVL4 protein, which causes a metabolic stress that ultimately kills the cell, and 3) Mislocalization of the ELOVL4 leads to production of a intermediate (a 3-keto fatty acid) that is toxic to the cell. We are actively testing these three possible causes of cell death.

Notable discoveries from Dr. Anderson's laboratory include: 1) First demonstration of the essentiality of omega-3 fatty acids in retinal function, 2) The role of the phosphoinositide cascade in phototransduction in the invertebrate retina, 3) The role of the insulin receptor/PI 3-kinase/Akt pathway in stress-induced retinal degenerations, 4) The role of oxidant stress in light-induced apoptosis of photoreceptor cells, and 5) The identification of the biosynthetic step catalyzed by the ELOVL4 protein, which is mutated in Stargardt-3 juvenile macular degeneration. 

The ultimate goal of our research program is to elucidate the molecular mechanisms of retinal degenerations and to use this knowledge to provide medical therapy to patients that suffer from devastating blinding diseases such as age-related macular degeneration, retinitis pigmentosa, Usher Syndrome, and Stargardt Disease.
Rajala A, Gupta, VK, Anderson RE, Rajala RVS. (2013). Insulin-phosphoinositide 3-kinase pathway regulates hexokinase-mitochondria interaction in the retina. Mitochondrion 13:566-576. [August 30, Epub ahead of print]. PMC3818532

Rajala A, Dighe R, Agbaga, M-P, Anderson RE, Rajala RVS. (2013). Insulin receptor signaling in cones. J Biol Chem, 288:19503-19515. May 14. [Epub ahead of print]. PMC3707652

Logan S, Agbaga M-P, Chan MD, Kabir N, Mandal NA, Brush RS, Anderson RE. (2013). Deciphering mutant ELOVL4 activity in autosomal dominant Stargardt Macular Dystrophy. Proc. Natl. Acad. Sci. USA, 110:5446-51. Mar 18. [Epub ahead of print]. PMC3619277

Garanto A, Mandal NA , Egido-Gabás M, Marfany G, Fabriàs G, Anderson RE, Casas J, Gonzàlez-Duarte, R. (2013) Specific sphingolipid content decrease in Cerkl knockdown mouse retinas. Exp. Eye Res. 110:96-106.

Logan S, Agbaga M-P, Chan MD, Brush RS, Anderson RE. (2014). ER microenvironment and conserved histidines govern ELOVL4 activity in VLC fatty acid elongation. J. Lipid Res. 55:698-708.

Bennett LD, Brush RS, Chen M, Lydic TA, Reese K, Reid GE, Busik JV, Elliott MH, Anderson RE (2014). Effect of reduced retinal VLC-PUFA on rod and cone photoreceptors. Invest Ophthalmol Vis Sci., 55:3150-3157. On line April 10.

Bennett LD, Hopiavuori BR, Brush RS, Chen M, Van Hook MJ, Thoreson WB, Anderson RE. (2014). Examination of VLC-PUFA-deficient photoreceptor terminals. Invest Ophthalmol Vis Sci. 55:3150-3157. On line April 24.

Mandal, NA, Tran J-TA, Zheng L, Wilkerson JL, Brush RS, McRae J, Agbaga M-P, Zhang K, Petrukhin K, Ayyagari R, Anderson RE (2014). In vivo effect of mutant ELOVL4 on the expression and function of wild type ELOVL4. Invest Ophthalmol Vis Sci. 55:2705-2713. On line March 18.

Agbaga M-P, Tam BM, Wong JS, Yang LL, Anderson RE, Moritz OL (2014). Mutant ELOVL4 that causes autosomal dominant Stargardt-3 macular dystrophy is misrouted to rod outer segment disks. Invest Ophthalmol Vis Sci. 55:3669-3680. On line May 15.

Rajala RVS, Rajala A, Morris AJ, Anderson RE (2014). Phosphoinositides: Minor lipids make a major impact on photoreceptor cell functions. Scientific Reports, On line June 26, 2014.




Dean McGee Eye Institute 
Department of Ophthalmology 
608 Stanton L. Young, Blvd. 
Oklahoma City, OK 73104 
Phone: (405) 271-8250 
Fax: (405) 271-8128